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Abstract
We calculate analytic expressions for the distribution of bipartite entanglement
for pure random quantum states. All moments of the purity distribution are
derived and an asymptotic expansion for the distribution itself is deduced.
An approximate expression for moments and distribution of Meyer–Wallach
entanglement for random pure states is then obtained.

PACS numbers: 03.67.Mn, 03.67.−a

(Some figures in this article are in colour only in the electronic version)

Introduction

The question of generating and measuring entanglement in multipartite quantum systems
has become of greater interest with the development of the field of quantum information.
Entanglement generation is an important aspect of several quantum information processes,
such as superdense coding [1], quantum communication [2], or quantum data hiding [3].
Various methods have been proposed in order to generate highly entangled quantum states,
based on pseudo-random unitary operators [4] or on the entangling power of chaotic quantum
maps [5, 6] or intermediate quantum maps [7]. Entanglement generation by means of pseudo-
random unitary operators or chaotic quantum maps relies upon the fact that unitary evolution
of any initial state leads to states whose entanglement properties are close to those of random
states, in particular to highly entangled states.

In order to quantify the entanglement of a state, or the entangling power of an operator, a
number of entanglement measures have been proposed, based either on quantum information
theory or on thermodynamical considerations: entanglement of formation and distillable
entanglement [8], relative entropy [9–11], n-tangle [12], concurrence [13]. For bipartite
entanglement of pure states, these measures all reduce to the entropy of entanglement
[14], which can be proved to be a unique entanglement measure [15, 16]. The entropy of
entanglement corresponds to the von Neumann entropy of the partial density matrix obtained
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by tracing over one subsystem. Rather than the von Neumann entropy itself, one often prefers
to consider the purity R, which corresponds (up to constants) to the so-called linear entropy,
that is the first-order term in the expansion of the von Neumann entropy around its maximum.
To quantify the degree of entanglement of multipartite pure states, one measure commonly
used, based on purity, is the measure proposed by Meyer and Wallach in [17]. Meyer–Wallach
entanglement Q can be defined as the average of the bipartite entanglement of one qubit with
all others, measured by the purity (see equation (18)) [18]. Meyer–Wallach entanglement was
used e.g. to quantify entanglement generation for pseudo-random operators [4] or intermediate
or chaotic quantum maps [7, 19, 20].

The study of purity or Meyer–Wallach entanglement is of particular interest for random
quantum states. Random pure states as column vectors of random unitary matrices distributed
according to the invariant Haar measure can be shown to be entangled with high probability.
Various analytical calculations have been carried out to characterize entanglement properties
of random states. Expressions for the first moment of the purity have been obtained by Lubkin
[21]; the second and third moments have been derived in [6], following earlier work [23]. The
average entropy has been obtained in [22]. Statistical properties of entanglement measures
for random density matrices were obtained in [25–28]. The average value for each Schmidt
coefficient of a random pure state has been calculated in [29]. In [30], the average entropy of
a subsystem was obtained from the average Tsallis entropy [31].

To further characterize entanglement of random pure states, our aim here is to give an
exact expression for all moments of the probability density distribution P(R) of the purity for a
bipartite random pure state. Since the probability distribution P(R) is defined over a bounded
interval (R is bounded), the knowledge of all moments determines uniquely the probability
distribution [32]. There are various techniques to obtain a function approximating the exact
probability density distribution in a controlled way (that is, by an expansion where the error
can be bounded) from the knowledge of its moments. In [33], an algorithm was given to
construct polynomials converging to the probability distribution. We will rather follow [34],
where the asymptotic expansion for nearly Gaussian distributions is calculated at all orders.
In section 1 the moments 〈Rn〉 for the distribution P(R) are calculated, and the construction
of the asymptotic expansion of P(R) at all orders from its moments is recalled. In section 2
the approximate moments 〈Qn〉 for the distribution P(Q) are derived. For both distributions,
the moments are expressed as sums involving a finite number of combinatorial terms and can
be easily calculated effectively. As an illustration, we give the first values of the cumulants
and calculate the probability density distribution expansion for Meyer–Wallach entanglement.

1. Bipartite entanglement for random pure states

Let � be a pure state belonging to a Hilbert space HA ⊗ HB , where HA and HB are spanned
respectively by {|ai〉}1�i�p and {|bi〉}1�i�q . We assume that p � q. Let xi be the Schmidt
coefficients for �. That is, the state � has a Schmidt decomposition (see e.g. [35])

|�〉 =
p∑

i=1

√
xi |ai〉 ⊗ |bi〉. (1)

The bipartite entanglement measure for � can be expressed through Schmidt coefficients xi .
The entropy of entanglement is the Shannon entropy of the xi s: S(�) = −∑p

i=1 xi ln xi . The
purity R(�) of the state � can be expressed as

R(�) =
p∑

i=1

x2
i . (2)
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For random states the Schmidt coefficients are distributed according to the density

P(x1, . . . , xp) = N
∏

1�i<j�p

(xi − xj )
2

∏
1�k�p

x
q−p

k δ

(
1 −

p∑
i=1

xi

)
(3)

for xi ∈ [0, 1], with some normalization factor N [38, 6]. The nth moment of the purity is
then given by

〈Rn〉 = N
∫ 1

0
dx1, . . . , dxp

∏
1�i<j�p

(xi − xj )
2

×
∏

1�k�p

x
q−p

k

(
x2

1 + x2
2 + · · · + x2

p

)n
δ

(
1 −

p∑
i=1

xi

)
. (4)

The calculation of 〈Rn〉 requires the evaluation of integrals of the form

I (n) =
∫ 1

0
dx1, . . . , dxpV (x)2xr

1, . . . , x
r
pδ

(
1 −

p∑
i=1

xi

)
fn(x), (5)

where r = q − p, x = (x1, . . . , xp) and n = (n1, . . . , np). The function fn(x) =
{xn1

1 x
n2
2 . . . x

np

p + all permutations of the ni} is a symmetric function of the xi and V is
the Vandermonde determinant

V (x) =
∏

1�i<j�p

(xi − xj ). (6)

The integral I (n) is evaluated in the appendix and yields

I (n) = p!
∏p

i=1(r + ni + i − 1)!(
p2 + rp +

∑
i ni − 1

)
!

∏
i<j

(nj − ni + j − i) + perm, (7)

where ‘+ perm’ indicates that expression (7) is a sum over all permutations of the ni . Now the
function f for a given 〈Rn〉 is obtained by multinomial expansion of the term

(
x2

1 + · · · + x2
p

)n =
∑

n1+n2+···+np=n

n!

n1!n2! . . . np!
x

2n1
1 x

2n2
2 . . . x

2np

p . (8)

The normalization constant N in (4) is given by the choice n = 0 in (5), i.e. N = 1/I (0).
This leads to

〈Rn〉 = (p2 + rp − 1)!

(p2 + rp + 2n − 1)!

∑
n1+n2+···+np=n

n!

n1!n2! . . . np!

×
∏p

i=1(r + 2ni + i − 1)!∏p

i=1(r + i − 1)!

∏
1�i<j�p

2nj − 2ni + j − i

j − i
. (9)

Replacing r by its value q − p and correspondingly changing all indices i to p + 1 − i (and ni

to np+1−i), one finally obtains

〈Rn〉 = (pq − 1)!

(pq + 2n − 1)!

∑
n1+n2+···+np=n

n!

n1!n2! . . . np!

×
p∏

i=1

(q + 2ni − i)!

(q − i)!i!

∏
1�i<j�p

(2ni − i − 2nj + j). (10)
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Note that one can cast (10) into an expression more symmetric in p and q by noting that∏
i<j (2ni − i − 2nj + j)∏p

i=1(p + 2ni − i)!
=

p∏
j=1

[
1

(2nj )!

j−1∏
i=1

(
1 − 2nj

2ni + j − i

)]
, (11)

yielding

〈Rn〉 = (pq − 1)!

(pq + 2n − 1)!

∑
n1+n2+···+np=n

n!

n1!n2! . . . np!

×
∏
ni �=0


 (q + 2ni − i)!(p + 2ni − i)!

(q − i)!(p − i)!(2ni)!

i−1∏
j=1

(
1 − 2nj

2ni + j − i

)
 . (12)

Equation (10) is a closed expression, involving only a finite sum over partitions of n into
numbers greater or equal to 0. Note that the order of ni matters: for instance for p = 2 and
n = 2 the sum will involve three terms (n1, n2) = (2, 0), (1, 1) and (0, 2). These partitions can
be easily generated for any n by some suitable algorithm (see e.g. [34] for such an algorithm
generating the partitions required). From equation (10) one can get the expressions for the
cumulants of the distribution P(R). Indeed, given the moments µn of a distribution the nth
cumulant κn reads (see e.g. [34])

κn = n!
∑
{km}

(−1)r−1(r − 1)!
n∏

m=1

1

km!

(µm

m!

)km

, (13)

where r = k1 + · · · + kn, and the sum runs over all ki � 0, 1 � i � n such that
k1 + 2k2 + · · · + nkn = n. As an example, the first five cumulants read

κ1 = p + q

1 + pq

κ2 = 2(p2 − 1)(q2 − 1)

(1 + pq)2(2 + pq)(3 + pq)

κ3 = 8(p2 − 1)(q2 − 1)(p + q)(−5 + pq)

(1 + pq)3(2 + pq)(3 + pq)(4 + pq)(5 + pq)
(14)

κ4 = 48(p2 − 1)(q2 − 1)(pq − 3)Ap,q

(1 + pq)3(2 + pq)(3 + pq)
∏7

i=1(i + pq)

κ5 = 384(p2 − 1)(q2 − 1)(p + q)Bp,q

(1 + pq)4(2 + pq)(3 + pq)
∏9

i=1(i + pq)
,

where Ap,q and Bp,q are polynomials in p and q defined by Ap,q = 28 − 112p2 − 153pq −
79p3q − 112q2 − 98p2q2 − 11p4q2 − 79pq3 − 3p3q3 + p5q3 − 11p2q4 + 4p4q4 + p3q5 and
Bp,q = 3528 − 6552p2 − 6343pq − 449p3q − 6552q2 + 1545p2q2 + 1237p4q2 − 449pq3 +
1164p3q3 +132p5q3 +1237p2q4 −274p4q4 −41p6q4 +132p3q5 −93p5q5 +p7q5 −41p4q6 +
9p6q6 + p5q7.

As expected, κ1 corresponds to Lubkin’s expression [21] for the average purity. For
n = 2, 3, one recovers the expressions derived in [6]. For larger n it is easy to generate the
exact value for each cumulant.

In the case p = 2, the analytic expression for the probability distribution P(R) dR can
easily be obtained analytically directly from (2), (3). It reads

P(R) dR = A(1 − R)q−2
√

2R − 1 dR (15)
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for 1/2 � R � 1, 0 otherwise (A is the normalization factor). For p � 3, the asymptotic
expansion of the distribution can be obtained (see [34] and references therein) by Edgeworth
expansion as a function of the normal distribution Z(x) = exp(−x2/2)/

√
2π , the mean

µ = κ1, the variance σ 2 = µ2 − µ2
1 = κ2 and rescaled cumulants γr = κr/σ

2r−2:

P(R) = 1

σ
Z

(
R − µ

σ

) 
1 +

∞∑
s=1

σ s
∑
{km}

Hes+2t

(
R − µ

σ

) s∏
m=1

1

km!

(
γm+2

(m + 2)!

)km


 . (16)

For each s, the sum runs over kj � 0 such that
∑

j jkj = s, and t is defined by t = ∑
j kj .

Hen(x) are Chebyshev–Hermite polynomials defined by Hen(x) = (−1)n ex2/2∂n e−x2/2 (here
∂ is the differential operator with respect to x) and correspond to rescaled Hermite polynomials:

Hen(x) = n!
[n/2]∑
k=0

(−1)kxn−2k

k!(n − 2k)!2k
. (17)

Equations (13)–(17) together with the knowledge of the moments (10) allow us to obtain
explicitly the asymptotic expansion of the probability density distribution at any order. The
error on the expansion is of the order of the last term included.

2. Multipartite entanglement

The Meyer–Wallach entanglement of a pure M-dimensional state � coded on m qubits (with
M = 2m) can be defined by

Q(�) = 2

(
1 − 1

m

m∑
i=1

Rk

)
, (18)

where Rk is the purity (2) of the kth qubit [18]. In order to calculate Q(�) for bipartite random
pure states we need to calculate the average purity of a bipartite system belonging to a Hilbert
space HA ⊗ HB , where HA has dimension p = 2 and HB has dimension q = 2m−1 = M/2.
The moments 〈Rn〉 can be obtained in this case either from equation (10) or directly from the
distribution (15). In both cases it leads to

〈Rn〉 = �
(
q + 1

2

)
√

π2n−1

n∑
k=0

(
n

k

) (
k + 1

2

)
!(

q + k − 1
2

)
!
. (19)

The calculation of the moments 〈Qn〉 involves terms of the form
〈 (∑

i Ri

)k 〉
. These terms

depend on correlations between the purities Ri . However, if we make the approximation that for
two different qubits i �= j we have 〈RiRj 〉 = 〈Ri〉〈Rj 〉 (and more generally

〈 ∏
i Ri

〉 = ∏
i〈Ri〉

for products over distinct qubits), we get a distribution P(Q) which turns out to be very
close to the numerical distribution obtained by generating random matrices. Making this
approximation we get〈(

m∑
i=1

Ri

)k〉
=

∑
k1+k2+···+km=k

k!

k1!k2! . . . km!
〈Rk1〉〈Rk2〉 . . . 〈Rkm〉. (20)

The nth moment is then

〈Qn〉 = 2n

n∑
k=0

(
n

k

)
(−1)kk!

mk

∑
k1+k2+···+km=k

〈Rk1〉
k1!

〈Rk2〉
k2!

. . .
〈Rkm〉
km!

. (21)



2798 O Giraud

0.994 0.995 0.996 0.997 0.998 0.999

-5

0

5

ln
 |P

(Q
) |

0.994 0.995 0.996 0.997 0.998 0.999
Q

-1

-0.5

0

0.5

1

Figure 1. Probability density function P(Q) of Meyer–Wallach entanglement Q for random
vectors of size 2m for m = 10. Top: P(Q) in logarithmic scale. Bottom: relative differences
(Ps(Q)/Pnum(Q)) − 1 between Ps(Q) (analytical expansion at order s) and the numerical curve.
From bottom to top on the left axis of the top figure: truncation of the expansion at order 0
(Gaussian, red, dotted); order 1 (green, short dashed); order 2 (blue, dot-dashed); order 3 (purple,
long dashed); numerical curve from column vectors of 1000 random unitary matrices obtained by
Hurwitz parametrization (black, solid).

Gathering together terms having the same exponents, we finally get

〈Qn〉 = 2n

n∑
k=0

(
n

k

)
(−1)kk!

mk

∑
{rk}

m!

r1!r2! . . . rk!(m − r)!

k∏
i=1

( 〈Ri〉
i!

)ri

, (22)

where r ≡ ∑
ri and 〈Rn〉 is given by (19). The sum runs over all ri � 0 such that

∑
j jrj = k.

From equations (19) and (22) one can now obtain the cumulants for the distribution P(Q) for
an m-qubit system (M = 2m). The first ones read

κ
Q
1 = M − 2

M + 1

κ
Q
2 = 6(M − 2)

(M + 1)2(M + 3)m

κ
Q
3 = 24(−M2 + 7M − 10)

(M + 1)3(M + 3)(M + 5)m2
(23)

κ
Q
4 = 144(M4 − 12M3 + 6M2 + 133M − 210)

(M + 1)4(M + 3)2(M + 5)(M + 7)m3

κ
Q

5 = −1152(1890 − 1763M + 337M2 + 78M3 − 23M4 + M5)

(M + 1)5(M + 3)2(M + 5)(M + 7)(M + 9)m4
.

We can use these approximate cumulants to obtain an analytical formula for P(Q). Calculating
the first terms in the asymptotic expansion (16) we obtain (the first terms can be found
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Figure 2. Same as figure 1 for m = 11. Numerical curve averaged over 650 random unitary
matrices.

in [39])

P(Q) ∼ 1

σ
Z

(
Q − µ

σ

) {
1 +

τ3

6
He3

(
Q − µ

σ

)
+

[
τ4

24
He4

(
Q − µ

σ

)
+

τ 2
3

72
He6

(
Q − µ

σ

)]

+

[
τ5

5!
He5

(
Q − µ

σ

)
+

τ3τ4

144
He7

(
Q − µ

σ

)

+
τ 3

3

1296
He9

(
Q − µ

σ

) ]
+ · · ·

}
, (24)

with µ = κ
Q
1 , σ =

√
κ

Q
2 and τi = κ

Q
i /σ i, i � 3. Figure 1 displays the probability density

function P(Q) for m = 10 qubits as obtained by averaging over numerically generated random
matrices, together with the plot of analytical expression (24) truncated at order 0 (Gaussian),
1 (first line of (24)), 2 (two first lines of (24)) and 3 (expression (24)), using the cumulants
(23). The tails of the distribution are reproduced with increasing accuracy when the number
of terms in the analytic expansion is increased. Figure 2 displays the same for m = 11.

It is to be noted that techniques similar to those used to derive 〈Rn〉 and P(R) in section 1
can be applied to derive distributions for random states drawn from orthogonal or symplectic
matrix ensembles, since the joint probability distribution for Schmidt coefficients is of the
same form as the distribution (3).
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Appendix

The aim of this appendix is to evaluate integrals of the form I (n) given by equation (5). The
Vandermonde determinant (6) can be written as

V (x) =
∑

σ

εσ x0
σ(1) . . . x

p−1
σ(p), (A.1)

where the sum runs over all permutations on p elements and εσ is the signature of the
permutation σ . For any function ϕ symmetric under permutations of the xi , we have∫ 1

0
dx1 . . . dxpV (x)2ϕ(x) =

∑
σ,σ ′

εσ εσ ′

∫ 1

0
dx1 . . . dxpx0

σ(1)x
0
σ ′(1) . . . x

p−1
σ(p)x

p−1
σ ′(p)ϕ(x)

=
∑
σ,σ ′

εσ◦σ ′

∫ 1

0
dx1 . . . dxpx0

1x0
σ◦σ ′(1) . . . xp−1

p x
p−1
σ◦σ ′(p)ϕ(x)

= p!
∫ 1

0
dx1 . . . dxpx0

1x1
2 . . . xp−1

p V (x)ϕ(x), (A.2)

with x = (x1, . . . , xp). Integral (5) becomes I (n) = ∑
τ J (τ (n)) where the sum runs over all

permutations of the ni , with

J (n) = p!
∫ 1

0
dx1 . . . dxpV (x)

p∏
i=1

x
r+ni+i−1
i δ

(
1 −

p∑
i=1

xi

)
. (A.3)

Using the fact that∫ 1

0
dx xa(1 − x)b = a!b!

(a + b + 1)!
, (A.4)

a recurrence on the number of integrals shows that∫ 1

0
dx1 . . . dxpx

a1
1 . . . x

ap

p δ

(
1 −

p∑
i=1

xi

)
= a1!a2! . . . ap!(∑p

i=1 ai + p − 1
)
!
. (A.5)

The Vandermonde determinant (A.1) can be written as

V (x) =
∑

σ

εσ x
σ(1)−1
1 . . . xσ(p)−1

p . (A.6)

Inserting this expression in integral (A.3) leads to a sum of integrals of the form (A.5), which
can be cast under

J (n) = p!
∏p

i=1(r + ni + i − 1)!(
p2 + rp +

∑
i ni − 1

)
!
�(n), (A.7)

with �(n) a determinant defined by

�(n) =

∣∣∣∣∣∣∣∣∣

1 r + n1 + 1 (r + n1 + 1)(r + n1 + 2) · · ·
1 r + n2 + 2 (r + n2 + 2)(r + n2 + 3) · · ·
...

...
...

...

1 r + np + p (r + np + p)(r + np + p + 1) · · ·

∣∣∣∣∣∣∣∣∣
. (A.8)
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The determinant can be evaluated by recurrence. It finally yields

J (n) = p!
∏p

i=1(r + ni + i − 1)!(
p2 + rp +

∑
i ni − 1

)
!

∏
i<j

(nj − ni + j − i), (A.9)

which in turn gives I (n) as a sum over permutations of the ni of J (n).
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